## Lab 1

## Measurement of Density

## A. Purpose

To measure the physical dimensions of an object with a vernier caliper and micrometer caliper and to analyze the data with the propagation of uncertainty.

## B. Introduction

Measurement is an experimental process of obtaining the value of a physical quantity. During the process, there are always uncertainties that occur. Therefore, the ability to evaluate the uncertainties and keep them to a minimum is important. This experiment focuses on the measurement of the density of an object and the techniques of data analysis, where the propagation of uncertainties should be considered for we cannot obtain the density directly.

Uncertainty analysis is the evaluation of uncertainty in measurement. The word uncertainty in science does not carry the meanings of the terms mistake or blunder. In contrast, it would inevitably occur in all measurements. In general, since we do not know the answer before measurements, it is only an estimate of the value of the measurand and thus the stated result would be a region instead of a single value. The standard form for reporting a measurement of a physical quantity $x$ is

$$
\begin{equation*}
\text { (measured value of } x \text { ) }=x_{\text {best }} \pm \delta x \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
x_{\text {best }}=(\text { best estimate for } x) \\
\delta x=(\text { an estimate of an uncertainty in the measurement })
\end{gathered}
$$

Note that eq(1) is NOT saying that all the measured values would lie in the range $x_{\text {best }}-\delta x$ to $x_{\text {best }}+\delta x$. We cannot state percent confidence in our margins of uncertainty until we understand the statistical laws that govern the process of measurement. We will return to this point later.

## 1. Significant Figures

Because the quantity $\delta x$ is an estimate of uncertainty, it should not be stated with too much precision. If we measure the acceleration of gravity $g$, it is absurd to state a result like

$$
\begin{equation*}
(\text { measured } g)=9.821 \pm 0.02325 \mathrm{~m} / \mathrm{s}^{2} \tag{2}
\end{equation*}
$$

where four significant figures are stated for the uncertainty. Instead, uncertainties should be stated with only one or two significant figures for more precise uncertainty has no meaning. We usually choose to state the uncertainties with two significant figures in high-precision work.

Thus, if some calculation yields the uncertainty $\delta g=0.02325 \mathrm{~m} / \mathrm{s}^{2}$, this answer should be rounded up to ${ }^{1} \quad \delta g=0.024 \mathrm{~m} / \mathrm{s}^{2}$, and (2) should be rewritten as

$$
\begin{equation*}
(\text { measured } g)=9.821 \pm 0.024 \mathrm{~m} / \mathrm{s}^{2} \tag{3}
\end{equation*}
$$

Once the uncertainty in a measurement has been estimated, the significant figures in the measured value must be considered. A statement such as

$$
\begin{equation*}
\text { measured speed }=6051.78 \pm 30 \mathrm{~m} / \mathrm{s} \tag{4}
\end{equation*}
$$

is also incorrect. The best estimate should be rounded so that its last significant figure is in the same decimal place as the uncertainty. Therefore, the correct statement is

$$
\begin{equation*}
\text { measured speed }=6052 \pm 30 \mathrm{~m} / \mathrm{s} \tag{5}
\end{equation*}
$$

If a measured number is so large or small that it calls for scientific notation (the use of the form $3 \times 10^{8}$ instead of $300,000,000 \mathrm{~m} / \mathrm{s}$, for example), then it is simpler and clearer to put the answer and uncertainty in the same form. For example,

$$
\begin{equation*}
\text { measured charge }=(1.61 \pm 0.05) \times 10^{-19} \text { Coulomb } \tag{6}
\end{equation*}
$$

is much easier to read and understand than in the form

$$
\begin{equation*}
\text { measured charge }=1.61 \times 10^{-19} \pm 5 \times 10^{-21} \text { Coulomb } \tag{7}
\end{equation*}
$$

## (1) Fractional Uncertainty

If $x$ is measured in the standard form $x_{\text {best }} \pm \delta x$, the fractional uncertainty in $x$ is

$$
\begin{equation*}
\text { fractional uncertainty }=\frac{\delta x}{\left|x_{\text {best }}\right|} \tag{8}
\end{equation*}
$$

and the percent uncertainty is just the fractional uncertainty expressed in percentage (that is, multiplied by $100 \%$ ). For example, the result (3.5) can be rewritten as

$$
\begin{equation*}
\text { measured speed }=6052 \mathrm{~m} / \mathrm{s} \pm 0.0050 \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { measured speed }=6050 \mathrm{~m} / \mathrm{s} \pm 0.50 \% \tag{10}
\end{equation*}
$$

Note that $\delta x /\left|x_{\text {best }}\right|$ is a dimensionless quantity. As you relate fractional uncertainty with the idea of significant figures, you should understand why no more than two significant figures should be stated for the uncertainties.

## (2) Propagation of Uncertainty

Physical quantities usually cannot be directly measured. For example, to find the momentum $p$ of a car, we should first measure its mass $m$ and its velocity $v$, and then use these values to calculate its momentum. To do so, we have to estimate the uncertainties

[^0]in the directly-measured quantities and then determine how these uncertainties $(\delta m, \delta v)$ "propagate" through the calculations to produce an uncertainty in the final answer $(\delta p)$. Here, we would only give the rules of propagation of uncertainties instead of providing a rigorous proof due to the complexity. For now, let's focus on how to deal with the propagation of uncertainty.

Suppose that two independent quantities $x$ and $y$ are measured with uncertainties $\delta x, \delta y$. We have uncertainty in sum and difference to be

$$
\begin{equation*}
\delta(x \pm y)=\sqrt{(\delta x)^{2}+(\delta y)^{2}} \tag{11}
\end{equation*}
$$

in product and quotient to be

$$
\begin{equation*}
\frac{\delta(x / y)}{|\overline{x / y}|}=\frac{\delta(x y)}{|\overline{x y}|}=\sqrt{\left(\frac{\delta x}{\bar{x}}\right)^{2}+\left(\frac{\delta y}{\bar{y}}\right)^{2}} \tag{12}
\end{equation*}
$$

and in powers to be

$$
\begin{equation*}
\frac{\delta\left(x^{y}\right)}{\left|\bar{x}^{y}\right|}=|y| \frac{\delta x}{|\bar{x}|} \tag{13}
\end{equation*}
$$

In general, for $n$ independent quantities, the uncertainty is the quadratic sum

$$
\begin{gather*}
\delta\left(x_{1}+\cdots+x_{n}\right)=\sqrt{\left(\delta x_{1}\right)^{2}+\cdots+\left(\delta x_{n}\right)^{2}}  \tag{14}\\
\frac{\delta\left(\frac{x_{1} \times \cdots \times x_{n}}{y_{1} \times \cdots \times y_{n}}\right)}{\left|\frac{x_{1} \times \cdots \times x_{n}}{y_{1} \times \cdots \times y_{n}}\right|}=\sqrt{\left(\frac{\delta x_{1}}{\bar{x}_{1}}\right)^{2}+\cdots+\left(\frac{\delta x_{n}}{\bar{x}_{n}}\right)^{2}+\left(\frac{\delta y_{1}}{\bar{y}_{1}}\right)^{2}+\cdots+\left(\frac{\delta y_{n}}{\bar{y}_{n}}\right)^{2}} \tag{15}
\end{gather*}
$$

## (3) Classification of Uncertainty

While facing repeated observations with different results, it is natural to ask ourselves which value is the most representative and what confidence level can we have in that value. The method we use is to introduce the best estimate as well as the uncertainty to state the result. For $n$ independent and identical ${ }^{2}$ measurements $X_{i}$, the best estimate is usually taken as the arithmetic mean or average.

$$
\begin{equation*}
X_{\text {best }}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{16}
\end{equation*}
$$

Note that $X_{1}, X_{2}, \ldots \ldots ., X_{n}$ here are random variables, which means that different trials give different results for $X_{1}, X_{2}, \ldots . . ., X_{n}$. In other words, different people would obtain different results for $X_{1}, X_{2}, \ldots . ., X_{n}$ when they measure the same quantity $n$ times. As

[^1]for the uncertainties, according to the International Standard Organization (ISO), there are two classifications: type A and type B.
(1) Type $\boldsymbol{A}$ (standard) uncertainty $u_{\mathrm{A}}$ is defined to be the standard deviation of the mean of the measured quantity. It statistically evaluates the random effects that make the difference in $X_{i}$. The experimental variance of the observations is
\[

$$
\begin{equation*}
\sigma_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \tag{17}
\end{equation*}
$$

\]

This variance and its positive square root $\sigma_{X}$, termed the experimental standard deviation, characterize the dispersion of data about the mean $\bar{X}$. Now, consider another random variable $A_{X}$, the average of $X_{i}$.

$$
\begin{equation*}
A_{X}=\frac{1}{n}\left(X_{1}+X_{2}+\ldots \ldots+X_{n}\right) \tag{18}
\end{equation*}
$$

Therefore, the best estimate of the variance of the mean $A_{X}$ is

$$
\begin{equation*}
\operatorname{Var}\left(A_{X}\right)=\sigma_{A_{X}}^{2}=E\left(A_{X}^{2}\right)-\left[E\left(A_{X}\right)\right]^{2} \equiv u_{\mathrm{A}}^{2} \tag{19}
\end{equation*}
$$

where $E[y]$ stands for the expectation value for the quantity $y$, and the type A uncertainty is defined to be the standard deviation of the mean of the measurements. Since the measurements independent and identical, one has

$$
\left\{\begin{array}{l}
\overline{X_{1}}=\overline{X_{2}}=\ldots \ldots=\overline{X_{n}} \equiv \bar{X}  \tag{20}\\
\overline{X_{1}^{2}}=\overline{X_{2}^{2}}=\ldots \ldots=\overline{X_{n}^{2}} \equiv \overline{X^{2}} \\
\overline{X_{1} X_{2}}=\overline{X_{1}} \cdot \overline{X_{2}}=\bar{X}^{2}
\end{array}\right.
$$

Therefore, Type A standard uncertainty $u_{\mathrm{A}}(X)$ is

$$
\begin{equation*}
u_{A}(X)=\sqrt{\operatorname{Var}\left(A_{X}\right)}=\frac{\sigma_{X_{1}}}{\sqrt{n}}=\frac{\sigma_{X}}{\sqrt{n}} \tag{21}
\end{equation*}
$$

Note that in eq(17), the experimental standard deviation is defined by the factor $n-1$ instead of $n$ due to Bessel correction. Also, as expected, the best estimate of the variance of the mean $u_{\mathrm{A}}(X)$ approaches 0 , as long as the number of trials $n$ is large enough, when the random effect would on average not influence the measurements at all.

It's worthnoting that the general definition for the best estimate is not $\bar{X}$ but $\overline{A_{X}}$ since while talking about the measurements, we are discussing the reproducible and therefore independent and identical measurements, instead of just one set of the measurements that you do. Therefore, that's why Type A uncertainty is said to be the standard deviation of the mean of the measurements. However here, since $\overline{A_{X}}=\bar{X}$, we simply use $\bar{X}$ to represent the best estimate of the measurements.
(2) Type B (standard) uncertainty is evaluated by non-statistical information such as instrument characteristics considering the systematic effects. The pool of information may include previous measurement data, manufacturer's specifications, data provided in calibration, uncertainties assigned to reference data taken from handbooks, or simply the experience.

For example, a calibration certificate states that the mass of a stainless steel mass standard $m_{s}$ of nominal value one kilogram is $1000.000325 g$ and that "the uncertainty of this value is $240 \mu \mathrm{~g}$ at the three standard deviation level." The standard uncertainty of the mass standard is then simply

$$
\begin{equation*}
u_{B}\left(m_{s}\right)=\frac{240 \mu g}{3}=80 \mu g \tag{22}
\end{equation*}
$$

On the other hand, if the uncertainty is not provided by the manufacturer, it can be roughly calculated. Assume it is equally possible for the measurand value $X$ to lie anywhere within the interval $\bar{X}-a / 2$ to $\bar{X}+a / 2$, where $a$ is the minumum scale value of the instrument. That is, we are assuming a rectangular distribution of possible values for the characterization. The best estimate and the variance of the measurements become

$$
\left\{\begin{array}{l}
E(X)=\int P(X) \cdot X d X=\frac{1}{a} \int_{\frac{\bar{X}}{\bar{X}}-a / 2}^{\overline{{ }_{x}^{2}}} X d X=\bar{X}  \tag{24}\\
\operatorname{Var}[x]=\overline{X^{2}}-\bar{X}^{2}=\frac{1}{a} \int_{\bar{X}-a / 2}^{\bar{X}+a / 2} X^{2} d X-\bar{X}^{2}=\frac{a^{2}}{12} \equiv u_{B}^{2}(X)
\end{array}\right.
$$

Therefore, the type B uncertainty is

$$
\begin{equation*}
u_{B}(X)=\frac{a}{2 \sqrt{3}} \tag{25}
\end{equation*}
$$

Last but not least, after obtaining Type A uncertainty and Type B uncertainty, the combined standard uncertainty $u_{C}(X)$ is therefore determined by

$$
\begin{equation*}
u_{C}(X)=\sqrt{u_{A}^{2}(X)+u_{B}^{2}(X)}=\delta X \tag{26}
\end{equation*}
$$

where $\delta X$ is called the best estimate of the uncertainty in the measurement.

## Example: Measurement of the volume of a cube

To obtain the volume, the side length of a cube should be measured first, and the results $L_{k}$ are shown in Table1 with the minimum scale value of the ruler to be 1 mm .

Table1. measured values of the side length

| No | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value $(\mathrm{mm})$ | 22.1 | 22.0 | 21.9 | 21.8 | 21.8 | 21.7 | 21.9 | 22.0 |
| No | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ |
| Value(mm) | 21.9 | 22.0 | 21.9 | 22.1 | 21.9 | 21.8 | 22.0 | 21.8 |

(1) Best estimate for the side length: (eq. 16)

$$
L_{\text {best }}=\bar{L}=21.9125 \ldots(\mathrm{~mm})
$$

(2) Type A standard uncertainty: (eq. 21)

$$
u_{A}(L)=\frac{\sigma_{L}}{\sqrt{16}}=0.0286 \ldots(\mathrm{~mm})
$$

(3) Type B standard uncertainty: (eq. 25)

$$
u_{B}(L)=\frac{1(m m)}{2 \sqrt{3}}=0.2886 \ldots(\mathrm{~mm})
$$

(4) Combined standard uncertainty: (eq. 26)

$$
u_{C}(L)=\sqrt{u_{A}^{2}(L)+u_{B}^{2}(L)}=\delta L=\sqrt{(0.0286 \ldots)^{2}+(0.2886 \ldots)^{2}} \approx 0.29(\mathrm{~mm})
$$

(5) Measured value of the side length:

$$
\text { (Measured side length } L \text { ) }=L_{\text {best }}+\delta L=\bar{L}+u_{C}(L)=21.91 \pm 0.29(\mathrm{~mm})
$$

(6) Best estimate for the volume of the cube:

$$
V_{\text {best }}=\bar{L}^{3}=21.91^{3}=10517.85 \ldots\left(\mathrm{~mm}^{3}\right)
$$

(7) Best estimate for the uncertainty of the volume: (eq. 13)

$$
\begin{gathered}
\frac{\delta V}{\left|V_{\text {best }}\right|}=\frac{\delta \bar{L}^{3}}{\left|\bar{L}^{3}\right|}=3 \frac{\delta L}{|\bar{L}|}=\frac{3 \times 0.29}{21.91}=0.0397 \ldots \\
\therefore \delta V=(10517.85 \ldots) \times(0.039 \ldots)=417.6 \ldots\left(\mathrm{~mm}^{3}\right) \approx 420\left(\mathrm{~mm}^{3}\right)
\end{gathered}
$$

(8) Calculated volume of the cubic block:

$$
V=V_{\text {best }} \pm \delta V \approx 10520 \pm 420\left(\mathrm{~mm}^{3}\right)
$$

Note that not until you want to state the result of the calculation would you need to round or round up (down) the number. For example, although the Type A uncertainty for the length stated above is $u_{A}(L) \approx 0.0286 \ldots(\mathrm{~mm})$, if you want to specifically state the Type A uncertainty of the length, then you should state as $u_{A}(L) \approx 0.029(\mathrm{~mm})$. The statement above is just used to show the steps of calculation clearly.

## (2) Statistical Analysis of the Random Effect

To get a better feel for the difference between random and systematic uncertainties, consider the analogy shown in Fig. 1. Here the "experiment" is a series of shots fired at a target; accurate "measurements" are shots that arrive close to the center. Random effect is caused by anything that makes the shots arrive at randomly different points, such as fluctuating atmospheric conditions between the marksman and the target. Systematic effect arises if anything makes the shots arrive off-center in one "systematic" direction, such as misaligned gun sights.

Although Fig. 1 is an excellent illustration of the random effect and the systematic effect, it is, however, misleading in one important respect. Because each of the two pictures shows the position of the target, we can tell at a glance whether a particular shot was accurate or not. Nonetheless, in real-life experiments, we do NOT know the true value (center) of the measurand; that is, we can easily assess the random effect but get NO guidance concerning the systematic effect in most real experiments.

(a)

(b)

Fig. 1. Random and systematic effect in target practice. The random effect is larger in (a), compared to (b), and the systematic effect is larger in (b), compared to (a).

Therefore, systematic uncertainties are usually hard to evaluate and even to detect. The experienced scientist has to learn to anticipate the possible sources of systematic effect and to make sure that all systematic effect is much less than the required precision. Also, the reference value or the most probable value of the best estimate for the measurand relies on differently and independently repeated measurements under the same condition.

For measurements with random effect, the distribution is called the normal, or Gaussian distribution, also referred to as the "bell curve." Mathematically, it is a two-parameter function:

$$
\begin{equation*}
f(X)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-(X-\bar{X})^{2}}{2 \sigma^{2}}\right] \tag{3.21}
\end{equation*}
$$

which describes the distribution of the data about the mean, $\bar{X}$, with standard deviation $\sigma$. Many real-life data sets have bell-shaped distribution and are approximately symmetric about the mean for the random effect.

Fig. 2(a) shows about $68 \%, 95 \%, 99,7 \%$ of the data lie within 1, 2, 3 standard deviations of the mean, or the interval $\bar{X}-\sigma$ to $\bar{X}+\sigma, \bar{X}-2 \sigma$ to $\bar{X}+2 \sigma, \quad \bar{X}-3 \sigma$ to $\bar{X}+3 \sigma$, respectively. Fig. 2(b) shows the functional form of three normalized Gaussian distributions, each with standard deviations of $1 / 2,1$, and 2 , respectively. Each curve has its peak centered on the mean, is symmetric about the value, and has an area under the curves equal to 1 .

Recall the claim at the beginning of this section. We can now tell that if the same quantity $X$ is measured many times under the same condition, and if all the sources of uncertainty are small and random, then the results will be distributed nearly around the average under the bellshaped curve. In particular, approximately $68 \%$ of your results will fall within a distance $\sigma_{X}$
on either side of $\bar{X}$; that is, $68 \%$ of your measurements will fall in the range $\bar{X} \pm \sigma_{X}$. In other words, if you make a single measurement under the same condition, the probability is $68 \%$ that your result will be within the interval $\bar{X}-\sigma$ to $\bar{X}+\sigma$. Thus, we can adopt $\sigma_{X}$ to mean exactly what we have been calling "uncertainty". With this choice, you can be $68 \%$ confident the measurement is within $\delta X$ of the best estimate.


Fig. 2. Functional forms of the normalized normal distributions. (a) The percentage of data within the interval $\bar{X}-\sigma$ to $\bar{X}+\sigma, \bar{X}-2 \sigma$ to $\bar{X}+2 \sigma, \bar{X}-3 \sigma$ to $\bar{X}+3 \sigma$, respectively. (b) Gaussian distributions, each with standard deviations of $1 / 2,1$, and 2 , respectively, and an area under each curve equal to 1 .

## C. Apparatus

|  | micrometer caliper | straight ruler | electric balance | precision balance |
| :--- | :--- | :--- | :--- | :--- |
| vernier caliper | mes |  |  |  |

## D. Procedures

1. Pre-lab assignments (hand in before the lab)
(1) Read the instructions for use of the vernier caliper and the micrometer caliper to learn how to use them to measure the quantities
(2) Make a flowchart of this lab and answer the questions below.
(3) Rewrite each of the following measurements in its most appropriate form
(i) $v=8.123456 \pm 0.0312 \mathrm{~m} / \mathrm{s}$
(ii) $x=3.1234 \times 10^{4} \pm 2 \mathrm{~m}$
(iii) $m=5.6789 \times 10^{-7} \pm 3 \times 10^{-9} \mathrm{~kg}$
(4) In an experiment with a simple pendulum, a student decides to check whether the period $T$ is independent of the amplitude $A$ (defined as the largest angle that the
pendulum makes with the vertical during its oscillations). He obtains the results shown in the Table below.
(i) Draw a graph of $T$ against $A$, including their uncertainties. Does the period depend on the amplitude?
(ii) If the measured period $T$ has an uncertainty of $\pm 0.3 \mathrm{~s}$, discuss how the conclusion of part (i) would be affected.

| Amplitude $A(\mathrm{deg})$ | Period $T(\mathrm{~s})$ |
| :---: | :---: |
| $5 \pm 2$ | $1.932 \pm 0.005$ |
| $17 \pm 2$ | $1.94 \pm 0.01$ |
| $25 \pm 2$ | $1.96 \pm 0.01$ |
| $40 \pm 2$ | $2.01 \pm 0.01$ |
| $53 \pm 2$ | $2.04 \pm 0.01$ |
| $67 \pm 2$ | $2.12 \pm 0.02$ |

(5) With eq(18)~(20), prove eq(21).
2. In-lab activities
(1) Calibrate the instruments to avoid the zero-point errors
(2) Obtain the densities of objects assigned by the lab instructor.
(i) Use the appararus to independently measure the quantities you need while calculating the densities of the given objects and record the data in the Excel tables. Twenty independent measurements are needed for each quantity.
(ii) Calculate the means, the standard deviations, and the standard deviations of the means of the quantities you measured. Report them in the standard forms.
(iii) Obtain the densities of the objects and state the results in the standard forms.
(iv) Use Archimede's principle to obtain the densities of the objects and report the results in the standard forms
(v) Compare the results obtained by the two methods.
3. Post-lab report
(1) Recopy and organize your data from the in-lab tables in a neat and more readable form
(2) Analyze the data you obtained in the lab and answer the given questions

## E. Questions

1. While measuring the height and the diameter of a cylinder metal rod, why should you do the procedures at different points of the rod and from different directions each time?
2. Suppose you are asked to determine the area of a rectangular object and you measure its length and its width. After repeating this procedure you obtain N sets of data. Which of the following two methods is correct for obtaining the area: (a) Take the average of length and width first and then multiply length by width; (b) Multiply the length by width for each data in each data set first and then take the average. Explain.
3. Is it possible for you to design a vernier caliper with its accuracy to be 0.02 mm ? Explain.
4. In the appendix, you may find two different data sets, which shows the counting of radioactive events using a Geiger counter.
(1) Find their average, and standard deviation. Plot a histogram to show their distribution.
(2) Find the average and standard deviation of the squared data.
(3) Compare the fractional uncertainties of the original data set and their squared. Explain what do you observe from the difference.
(4) (Optional) Distribution of this data can be described by a famous Poisson distribution. Give a short introduction about the distribution and explain the result. Try to fit the data by Poisson distribution and explain what makes this different from the normal distribution.
5. Suppose that due to the previous experiment, a PVC circular pipe provided by the lab is compressed into an ellipse, with a semi-major axis length $a$ and semi-minor length $b$.
(1) Use $a, b$, and $(a+b) / 2$ as the radii of three circles to calculate their individual areas. Compare the results with the ellipse area. Which one has the smallest difference?
(2) In reality, how should we experiment to get the least difference between the measured value and its area?

## F. References

Hughes, Ifan, and Thomas Hase. Measurements and their uncertainties: a practical guide to modern error analysis. OUP Oxford, 2010.
BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML, Evaluation of Measurement DataGuide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, 2008.

## Appendix: Data set 1 of radioactive events

| 134 | 104 | 109 | 99 | 132 | 108 | 94 | 115 | 115 | 109 | 99 | 104 | 97 | 124 | 112 | 122 | 127 | 134 | 104 | 109 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 109 | 101 | 110 | 106 | 106 | 116 | 121 | 134 | 125 | 103 | 116 | 120 | 115 | 123 | 113 | 89 | 112 | 109 | 101 | 110 |
| 129 | 101 | 116 | 102 | 96 | 116 | 128 | 88 | 121 | 105 | 120 | 104 | 124 | 94 | 137 | 108 | 122 | 129 | 101 | 116 |
| 114 | 115 | 98 | 113 | 106 | 125 | 115 | 97 | 116 | 129 | 117 | 106 | 125 | 113 | 110 | 123 | 120 | 114 | 115 | 98 |
| 131 | 114 | 116 | 118 | 118 | 96 | 113 | 110 | 113 | 124 | 119 | 115 | 106 | 122 | 109 | 103 | 118 | 131 | 114 | 116 |
| 124 | 113 | 126 | 122 | 100 | 115 | 97 | 133 | 96 | 105 | 119 | 98 | 136 | 100 | 126 | 113 | 104 | 124 | 113 | 126 |
| 99 | 111 | 100 | 119 | 114 | 111 | 115 | 106 | 105 | 101 | 119 | 89 | 118 | 113 | 106 | 111 | 141 | 99 | 111 | 100 |
| 114 | 118 | 107 | 110 | 126 | 119 | 131 | 105 | 124 | 82 | 116 | 108 | 116 | 108 | 114 | 110 | 119 | 114 | 118 | 107 |
| 120 | 129 | 118 | 116 | 135 | 109 | 99 | 142 | 122 | 131 | 114 | 91 | 99 | 135 | 118 | 157 | 102 | 120 | 129 | 118 |
| 129 | 126 | 125 | 110 | 120 | 130 | 115 | 108 | 126 | 96 | 126 | 111 | 107 | 111 | 125 | 112 | 107 | 129 | 126 | 125 |
| 121 | 115 | 106 | 118 | 122 | 111 | 111 | 100 | 126 | 108 | 97 | 122 | 114 | 112 | 113 | 133 | 116 | 121 | 115 | 106 |
| 106 | 98 | 123 | 92 | 93 | 103 | 150 | 108 | 130 | 130 | 106 | 120 | 111 | 129 | 132 | 104 | 113 | 106 | 98 | 123 |
| 99 | 111 | 116 | 130 | 138 | 129 | 135 | 152 | 127 | 128 | 91 | 121 | 117 | 115 | 112 | 112 | 103 | 99 | 111 | 116 |
| 121 | 102 | 131 | 114 | 120 | 129 | 111 | 130 | 111 | 139 | 122 | 143 | 120 | 113 | 118 | 99 | 104 | 121 | 102 | 131 |
| 98 | 106 | 129 | 108 | 110 | 131 | 112 | 118 | 116 | 104 | 98 | 118 | 124 | 100 | 113 | 116 | 117 | 98 | 106 | 129 |
| 112 | 118 | 123 | 104 | 111 | 111 | 123 | 129 | 109 | 95 | 117 | 140 | 102 | 106 | 107 | 116 | 131 | 112 | 118 | 123 |
| 124 | 111 | 117 | 115 | 121 | 131 | 132 | 111 | 114 | 106 | 121 | 117 | 127 | 98 | 128 | 132 | 132 | 124 | 111 | 117 |
| 120 | 141 | 122 | 109 | 116 | 128 | 103 | 144 | 111 | 121 | 124 | 112 | 131 | 115 | 111 | 88 | 94 | 120 | 141 | 122 |
| 100 | 106 | 115 | 109 | 101 | 120 | 121 | 99 | 121 | 124 | 117 | 101 | 107 | 124 | 116 | 128 | 128 | 100 | 106 | 115 |
| 126 | 105 | 113 | 144 | 120 | 124 | 131 | 98 | 100 | 124 | 122 | 118 | 125 | 117 | 125 | 112 | 132 | 126 | 105 | 113 |
| 118 | 103 | 113 | 113 | 116 | 109 | 112 | 127 | 103 | 105 | 116 | 121 | 102 | 111 | 108 | 105 | 124 | 118 | 103 | 113 |

Data set 2

| 67 | 83 | 60 | 65 | 73 | 61 | 69 | 61 | 87 | 69 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104 | 74 | 61 | 64 | 75 | 58 | 62 | 66 | 78 | 68 |
| 60 | 83 | 72 | 62 | 76 | 71 | 67 | 55 | 61 | 66 |
| 70 | 73 | 65 | 44 | 61 | 55 | 66 | 49 | 65 | 68 |
| 49 | 77 | 73 | 51 | 63 | 62 | 62 | 65 | 54 | 86 |
| 63 | 68 | 63 | 60 | 74 | 73 | 54 | 58 | 71 | 62 |
| 67 | 78 | 71 | 64 | 70 | 51 | 77 | 106 | 74 | 67 |
| 73 | 113 | 68 | 106 | 54 | 64 | 62 | 54 | 78 | 70 |
| 59 | 85 | 70 | 68 | 83 | 110 | 74 | 78 | 93 | 64 |
| 101 | 71 | 88 | 61 | 63 | 66 | 68 | 53 | 92 | 72 |
| 64 | 94 | 70 | 76 | 53 | 58 | 90 | 59 | 104 | 71 |
| 55 | 71 | 75 | 67 | 72 | 62 | 94 | 65 | 96 | 65 |
| 103 | 72 | 102 | 60 | 99 | 80 | 87 | 64 | 56 | 69 |
| 72 | 66 | 84 | 65 | 104 | 61 | 101 | 59 | 65 | 75 |
| 71 | 95 | 59 | 68 | 85 | 61 | 58 | 71 | 61 | 65 |
| 96 | 93 | 75 | 87 | 102 | 98 | 63 | 73 | 88 | 103 |
| 56 | 91 | 76 | 67 | 63 | 73 | 69 | 86 | 68 | 96 |
| 69 | 64 | 90 | 52 | 57 | 87 | 57 | 84 | 67 | 97 |
| 61 | 55 | 90 | 84 | 73 | 71 | 75 | 78 | 78 | 98 |
| 71 | 69 | 62 | 78 | 53 | 80 | 69 | 82 | 115 | 84 |
| 84 | 61 | 61 | 75 | 68 | 70 | 76 | 95 | 92 | 68 |
| 106 | 75 | 50 | 91 | 67 | 73 | 87 | 76 | 60 | 69 |

NTHU General Physics Laboratory
2022 Fall by T. F. Yang

| 76 | 52 | 67 | 52 | 61 | 93 | 51 | 65 | 82 | 53 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 81 | 64 | 53 | 64 | 69 | 61 | 65 | 94 | 66 | 60 |
| 72 | 68 | 47 | 104 | 53 | 78 | 84 | 65 | 64 | 60 |
| 74 | 52 | 68 | 68 | 61 | 85 | 63 | 70 | 97 | 70 |
| 83 | 65 | 64 | 66 | 72 | 79 | 76 | 62 | 75 | 65 |
| 82 | 69 | 59 | 104 | 72 | 60 | 100 | 101 | 52 | 64 |
| 76 | 64 | 55 | 71 | 58 | 64 | 64 | 85 | 68 | 81 |
| 91 | 70 | 66 | 87 | 107 | 102 | 59 | 88 | 68 | 55 |
| 73 | 63 | 57 | 67 | 63 | 101 | 58 | 61 | 76 | 68 |
| 85 | 103 | 74 | 113 | 69 | 86 | 68 | 63 | 98 | 80 |
| 94 | 54 | 62 | 87 | 64 | 77 | 83 | 63 | 79 | 66 |
| 112 | 55 | 61 | 93 | 69 | 77 | 76 | 58 | 79 | 71 |
| 114 | 61 | 70 | 64 | 89 | 52 | 72 | 47 | 82 | 59 |
| 99 | 76 | 62 | 111 | 79 | 64 | 68 | 60 | 66 | 76 |


[^0]:    ${ }^{1}$ If the digit next to the last siginificant figure is 0 , one should instead just round it down.

[^1]:    ${ }^{2}$ We believe that physics experiments are reproducible; therefore, once the number of measurements is large enough, we can argue that other sets of measurement would give the same result as the first set suggests.

